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It is shown that a simple relationship exists between the real and imaginary parts of
complex modes of all systems which can be represented by real and symmetric mass,
stiffness and damping matrices. The relationship is most simply expressed in those cases
where all roots are complex and where the real parts of all roots have the same sign. In
these cases, the relationship can be expressed in a form where the imaginary part of the
modal matrix is equal to the real part of the modal matrix post-multiplied by a matrix which
involves an arbitrary real orthogonal matrix and some diagonal matrices which are
determined directly from the complex roots. In other cases, there remains a relationship
between the real and imaginary parts, but this must be expressed in a different way.
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1. INTRODUCTION

In the analysis of an undamped system having N degrees of freedom and which is
represented by real symmetrical stiffness and mass matrices K and M, respectively, there
are N real modes (in modal matrix U) and N natural frequencies. It is not insisted here
that the system matrices are positive definite but this would often be the case. The stiffness
matrix of a free–free system has some zero eigenvalues and so it may be positive
semi-definite. If the modes have been mass-normalized, then one can use the modal
representation of the system in place of the system matrices and it is clear that there is
no more compact representation than this in general since there are N2 +N independent
parameters in (K, M) and the same number in the combination of modal matrix U and
diagonal matrix L containing the eigenvalues.

If one allows the system to have proportional damping, then there will still be a real
(N×N) modal matrix, U, but there will now be 2N complex roots of the eigenvalue
equation. There is a constraint that the complex roots occur in conjugate pairs so that one
can be satisfied with holding only N real parts and N imaginary parts (as real numbers).
The introduction of proportional damping accounts for only a further N real parameters
in the specification of the system since proportional damping can be expressed by a
diagonal matrix in the principal co-ordinates and one can regard the modal matrix, U, as
determined by K and M. Thus, the initial number of independent real parameters is
N2 +2N in this case and the number of real parameters in the modal representation is
N2 +2N.
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If one now allows the system to have non-proportional damping, (but retains the
assumption of symmetry of all system matrices) then one begins with a space of
3N(N+1)/2 independent real parameters and a modal representation can be found for
this system which will have 2N complex modes and 2N complex roots to the eigenvalue
equation. The (N×2N) matrix of modes, U can be partitioned into two (N×N) parts
as U=[U1, U2] with U2 = conj (U1) and each part has an associated set of N complex roots
arranged in diagonal matrices S1 and S2 respectively with S2 = conj (S1). Evidently, the
modal representation can be compacted to N2 +N complex numbers by storing only U1

and S1. Alternatively, one might decide to store Ur (=(U1 +U2)/2) and Ui (=(U1 −U2)/2j)
together with Sr (= (S1 +S2)/2) and Si (=(S1 −S2)/2j) which collectively requires
2(N2 +N) real numbers. Since there were fewer independent parameters than this in
(K, C, M), it is clear that one cannot in general select Ur and Ui arbitrarily and hope to
reconstruct real, symmetrical K, C and M which will reproduce this set of complex modes.
Indeed, if Ur , Sr and Si have been chosen, it is clear that there are only N(N+1)/2
independent parameters left in choosing Ui . There are exactly N(N+1)/2 independent
parameters in the determination of an (N×N) orthogonal matrix.

It is shown in what follows that (when all roots are complex and when all real parts
have the same sign) the implicit constraints take the form . . . . Ui=Ur (Ly )−1(Lx −H · Lz )
where H is orthogonal and Lx , Ly , Lz are diagonal. All of the matrices in this equality
are purely real. If Ui and Ur have been normalized in a certain way, then it is shown that
Lx , Ly , Lz are related to the characteristic roots of the system.

This observation appears to be new in the literature. Since the general case of
proportional damping was outlined by Caughey and O’Kelly [1] in 1965, there have been
numerous publications on the area of complex modes ranging from the causes of these
modes [2–4], the practicalities of deterimining the normal modes of K, M from measured
complex modes [5–9], the identification of the complex modes from frequency-response
data [10] and the errors associated with ignoring the damping coupling between the
‘‘normal modes’’ [11–13].

Note, finally, that this paper deals only with systems represented by symmetrical
matrices. It is almost certain that the concepts presented here extend to the more general
case where the damping matrix, in particular, might have some component of
skew-symmetry due to gyroscopic or Coriolis effects.

2. MODAL COMPUTATION OF THE RESPONSE OF THE GENERAL SELF-ADJOINT
DAMPED SYSTEM

Let K, C and M be (N×N) matrices representing the stiffness, damping and mass
properties of a system under a set of co-ordinates in which q is the vector of displacements
and Q is the vector of forces. For a particular angular frequency, v, the system behaviour
is encapsulated in the equation

[K+jvC−v2M]q=Q. (1)

The system can be represented by determining the solution of the homogeneous equation.
Because the system has damping, the characteristic roots will not be purely imaginary and
in place of the relationship q(t)= real (q exp(jvt)) implicit in equation (1), one now uses
q(t)= real (q exp(st)). With u denoting any one of damped modes of the system and s the
associated root, then equation (2) provides a definition of both the damped mode and its
associated root:

[K+ sC+ s2M]U=0. (2)
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There are 2N distinct values of s which will make the determinant of [K+ sC+ s2M] equal
to zero. Since K, C and M are purely real, the roots must occur in conjugate pairs and
they can be gathered into two diagonal matrices S1 and S2 with S2 = conj (S1). If for each
of the roots held on the diagonal of S1, the associated vector is inserted as a column of
U1, then equation (2) becomes equation (3) below which shows that the solution vectors
also occur in conjugate pairs and that U2 = conj (U1):

KU1 +CU1S1 +MU1S2
1 =0=KU2 +CU2S2 +MU2S2

2. (3)

The solutions of equation (2) can be determined by setting up a state–space form of the
equation. This can take any one of a number of forms but for the present purposes, the
following form is chosen:

$$0
K

K
C%− s $K0 0

−M%% . v=0=[A− sB] . v. (4)

The solution vectors v will each be composed as shown in equation (5) below and the roots,
s, and vectors v can be arranged in matrices S and V, respectively, as shown:

vi =$ ui

uisi% , V=$ U1

U1S1

U2

U2S2% , S=$S1

0
0
S2% , (5)

Notice that since K, C and M are symmetric, then A and B are also symmetric and in the
same way that UTKU and UTMU can be caused to be diagonal through correct choice of
U (as the matrix of normal modes for the undamped system K, M), VTAV and VTBV are
diagonal. With appropriate scaling of the complex modes,

VTAV=Sc $UT
1

UT
2

S1UT
1

S2UT
2%$0

K
K
C%$ U1

U1S1

U2

U2S2%=$S1

0
0
S2% ,

VTBV= Ic $UT
1

UT
2

S1UT
1

S2UT
2%$K0 0

−M%$ U1

U1S1

U2

U2S2%=$I0 0
I% . (6)

Equations (6) can be used directly to establish a modal formula for the computation of
the response of damped systems as an efficient alternative to q=[K+jvC−v2M]−1Q
when the response will be computed at a number of different frequencies:

$ q
qjv%=$ U1

U1S1

U2

U2S2%$$S1

0
0
S2%−jv $I0 0

I%%
−1

$UT
1

UT
2

S1UT
1

S2UT
2%$ 0

Q%
c q=[U1[S1 − jvI]−1S1UT

1 +U2[S2 − jvI]−1S2UT
2 ]Q. (7)

The computation of response of a damped system is relevant to this paper only because
it demonstrates that by measuring system response in the form of FRFs, it is perfectly
possible to achieve the desired scaling of the complex modes. It has been noted by Ibrahim
and Sestieri [5] that scaling of complex modes cannot be treated in quite the same arbitrary
way as the scaling of real modes.
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3. PROOF OF THE IDENTITY—CORRECTLY SCALED MODES

In this section, it is assumed that the modes have either been computed from a numerical
model in which case it is straightforward to achieve the desired scaling of the modes or
that they have been obtained from modal analysis based on measured FRFs and that they
have been scaled so that equation (7) applies.

The proof then begins with the first of the two equations presented in equations (6). The
central observation in the proof is that the (2N×2N) matrix, A, contains an (N×N)
block of zeros. This equation can be post-multiplied by a certain matrix and pre-multiplied
by its transpose to provide a direct reference to the block of zeros in A as follows:

[U−T
1 S−1

1 −U−T
2 S−1

2 ]$UT
1

UT
2

S1UT
1

S2UT
2%$0

K
K
C%$ U1

U1S1

U2

U2S2%$ S−1
1 U−1

1

−S−1
2 U−1

2 %
=[XT 0]$0

K
K
C%$X0%=0,

c [U−T
1 S−1

1 −U−T
1 S−1

1 ]$S1

0
0
S2%$ S−1

1 U−1
1

−S−1
2 U−1

2 %=0

c U−T
1 S−1

1 U−1
1 +U−T

2 S−1
2 U−1

2 =0. (8)

Note that in equations (8), the value of X is irrelevant. Upon observing that U2 = conj (U1)
and S2 = conj (S1), it is evident that the last of equations (8) can be written more concisely
as (9).

real (U−T
1 S−1

1 U−1
1 )=0. (9)

One can now invoke the definitions of Ur and Ui and suppose that there is some
relationship between these two matrices of the form Ui =Ur · Y. Note that Y is purely real
(since Ui and Ur are themselves real) and assume that U1 and Ur are non-singular. This
enables one to make an observation about U−1

1 :

U1 = (Ur +jUi )=Ur (I+jY)c U−1
1 = (I−jY)(I+Y2)−1U−1

r . (10)

Matrix U−1
r is necessarily full-rank. Equally, because Y is purely real, Y2 is positive definite

and it can be shown that (I+Y2) must be invertible. Therefore no information is lost by
recasting equation (9) as

real ((I−jY)TS−1
1 (I−jY))=0. (11)

Let (S1)−1 be represented by L1 and let the real and imaginary parts of L1 = (Lr +jLi ) with
Lr and Li being purely real. Since S1 and S2 are diagonal, then L1, L2, Lr and LI are also
diagonal. The following is then obtained as an alternative form of equation (11):

[I YT]$Lr

Li

Li

−Lr%$ I
Y%=0. (12)
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By completing the square and negating, equation (12) is made equivalent to

[I YT] · $Lr

Li

Li

−Lr% · $ I
Y%=Lr +Li · Y+YT · Li −YT · Lr · Y=0

c (L−0·5
r Li −L0·5

r · Y)T(L−0·5
r Li −L0·5

r · Y)−Lr −L−1
r L2

i =0

c (Lx −LyY)T(Lx −LyY)=L2
z , (13)

where Lx =L−0·5
r Li , Ly =L−0·5

r Lr and Lz =L−0·5
r (L2

r +L2
i )0·5. Any orthogonal matrix H

(with HTH= I=HHT) can be used to determine a matrix Y which will satisfy
equation (13):

(Lx −LyY)=H · Lz c Y=(Ly )−1(Lx −H · Lz ). (14)

The identity has been proven but one additional note is worthwhile here. It appears that
there has been an implicit assumption that Lr is positive since one is using L0·5

r to relate
purely real matrices. In general, with passive systems, one would ordinarily expect that all
of the real parts of S1 and S2 would be negative (i.e., the system would be stable). It follows
from this that Lr generally has all negative values on its diagonal. This case poses no
difficulty in fact since equation (14) can be rearranged as

Y=L−1
r Li −(Lr )−0·5H · (L2

r +L2
i )(Lr )−0·5. (15)

If Lr is negative definite, then Y as determined from equation (15) will be purely real. Some
difficulty does arise when some of the entries of Lr are positive and some negative. Equally,
some difficulty arises when some of the entries of Lr are zero. In these cases, one cannot
construct the relationship between the real and imaginary parts as in equation (15) and
must be content with using the relationship in the form (12).

4. PROOF OF THE IDENTITY—ARBITRARILY SCALED MODES

In section 2, it was noted that one can rely on achieving the particular scaling of the
complex modes given in equation (6) if one has FRF information. Even in the case of
measured data, a calibration error in any sensor would have the same effect across all
modes and should not cause a problem to the constraint (since it was developed without
any knowledge of the system matrices except that they were real and symmetrical).

However, sometimes, the modes of a system can be identified by observing the outputs
from the system given a set of unknown white or coloured random inputs (as done, for
example, by Cooper et al. [14]). In this case, the scale and the physical distribution of the
input forces would be unknown and therefore, it would not be possible to ensure the
desired scaling of the modes. One can, however, be assured that the modes thus determined
will occur in complex conjugate pairs becasue the response comprises purely real numbers.
One also recognizes that other workers will choose to scale their modes differently. Balmés
[7] mentioned several possible scaling strategies. Thus, it is appropriate to look at whether
the relationship between real and imaginary parts still holds when the modes have been
scaled according to some other rule.

One begins these considerations by noting that, provided the modes remain in conjugate
pairs, any arbitrary (possibly complex) scaling will result in an expression of the form

$UT
1

UT
2

S1UT
1

S2UT
2%$0

K
K
C%$ U1

U1S1

U2

U2S2%=$S1C1S1

0
0

S2C2S2% . (16)
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For clarity, note that with the original scaling, C1 would be identical to L1. Then the
development of the above section can be retraced exactly with Cr and Ci replacing Lr and
Li from equations (12)–(14) to find that for some real orthogonal matrix, H,

Y=(C−1
r Ci )− (Cr )−0·5H · (C2

r +C2
i )(Cr )−0·5. (17)

Without knowing Cr and Ci , the usefulness of this identity initially appears curtailed.
However, given an arbitrary Y matrix, of the form (17), one can extract all of the
component parts Cr , Ci , and H. This extraction would begin with determining what
scaling factor, di satisfied the condition that dividing row i by di and multiplying column
i by the same di would cause the row and column to have equal norms. Then, recognizing
that the norm of every row and column of H must be 1 provides a method for determining
all unknowns.

5. A 4-DEGREE-OF-FREEDOM EXAMPLE

A ficticious 4-degree-of-freedom system is represented by the following system matrices
where K, C and M represent stiffness, damping and mass respectively:

3 −1 0 0 0 0 0 0 2 0 0 0

−1 3 −2 0 0 2 0 0 0 3 0 0
K=G

G

G

K

k
0 −2 4 −1

G
G

G

L

l

, C=G
G

G

K

k
0 0 3 0

G
G

G

L

l

, M=G
G

G

K

k
0 0 5 0

G
G

G

L

l

.

0 0 −1 2 0 0 0 0 0 0 0 3

By setting up and solving the resulting equation (4), one finds the complex roots and modes
shown in Table 1, in which the real and imaginary parts of the various roots and modes
are separated. As the roots (and modes) occur in complex pairs, one requires only to give
the real and imaginary parts of one element of the pair and the other follows by simply
negating the imaginary parts.

From this modal data, it is straightforward to compute real matrix Y which relates Ur

and Ui (according to equation (10)). One finds the value for Y shown in Table 2. Using
equation (13) to find the diagonal matrices Lx , Ly and Lz . and then applying equation (14),
one can determine the unknown matrix H since one already has full knowledge of Y. It is

T 1

Complex modal data and complex roots for the 4-degree-of-freedom system

Pair no. 1 Pair no. 2 Pair no. 3 Pair no. 4

Real parts of −0·064158315 −0·250985171 −0·041859052 −0·276330796
pair of roots

Imaginary parts of −1·256530540 −1·135885560 −0·818372708 −0·413311369
pair of roots

Real parts of 0·421209338 −0·127040807 −0·082927194 0·196646053
modal vectors −0·082722431 −0·268357443 −0·140494226 0·535537593

−0·005450471 0·208414779 −0·009028188 0·494961944
−0·002105298 −0·055735339 0·487591987 0·279855967

Imaginary parts of 0·061244473 0·174554056 0·018247309 0·037753076
modal vectors 0·126669953 −0·049650601 0·019001072 0·195962647

−0·064018227 0·017413550 0·100082235 0·155297273
0·023125522 −0·067044888 0·034565787 −0·021250142
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T 2

The Y matrix (Y=U−1
r · Ui )

0·00656652680 0·42515755509 0·03682099660 −0·08981119374
−0·39298787425 0·10435081954 0·17097116985 0·01459069006
−0·1805827756 −0·12014112160 0·01546335436 −0·21602818273

0·03587954858 −0·00626725158 0·13089817226 0·32026828681

shown in Table 3. It is trivial to check that this matrix H is orthogonal. Any error in the
orthogonality of H can be measured by finding (HTH− I).

6. POSSIBLE APPLICATIONS FOR THE IDENTITY

Three applications are immediately evident and a fourth is thought likely. In all cases,
some additional work is necessary.

The identity provides the ability to check sets of complex modes determined from
measured data and to force them to obey the constraint which must be present if the system
from which these modes were obtained could be represented by real symmetrical mass,
stiffness and damping matrices. The issues requiring further work relate primarily to the
fact that there will normally be a difference between the number of measurement points
and the number of pairs of modes identified, but additional work is also needed in the
determination of some measure of the violation of the constraints and some method of
modifying the modes with a minimum adjustment such that the constraint is obeyed. If
the measured modal matrices are square, then the only knowledge required for computing
such a check is available in the associated natural frequencies and damping levels. The
example illustrates that a matrix H can be extracted from the scaled modal data and
knowledge of the characteristic roots. If H is perfectly orthogonal, the constraints have
been obeyed.

An alternative to equation (1) would be to build the identity implicitly into a
modal-extraction algorithm for complex modes so that the modes produced implicitly
satisfied the constraint. This might involve identifying Sr , Si , Ur and H in which case some
of the equations in the parameters would be second-order instead of linear. Additional
work might succeed in recasting the constraint into a form in which such an identification
process was broken into stages—perhaps determining H initally and then Ur once H is
known. The identification problem might then be restored to comprising equations linear
in the unknown parameters at every stage.

The identity provides for more compact storage of sets of complex modes and for more
efficient calculation of the response of non-proportionally damped systems from the modal
sets. The issues which will clearly need to be addressed include how to deal with the use
of a small proportion of the modes and how to carry out some of the matrix multiplications
which will inevitably involve a non-square orthogonal matrix H.

T 3

The H matrix (H=(Lx −Ly · Y)L−1)

0·99903383699 0·04288070983 0·00151662520 −0·00950458474
−0·04286905562 0·99896165737 0·01506453983 0·00330315360
−0·00114203388 −0·01502767878 0·99948434894 −0·02835314552

0·00960897435 −0·00331974519 0·02831599759 0·99954732313
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It is conceivable that the identity could pave the way to a more efficient and more
accurate solution method for the roots of the second order equation. If, for example, the
H matrix could be determined through the solution of an (N×N) eigenvalue problem,
then it is possible that the remainder of the problem could be solved with similar dispatch.

7. CONCLUSIONS

It is evident from a simple count of the number of independent real parameters in a set
of symmetric matrices (K, C, M) and a count of the total number of real parameters in
the usual complex modal representation of the same system that there are more parameters
in the latter than there are in (K, C, M). Evidently, there are some implicit constraints on
the parameters in the complex modal representation. These constraints manifest
themselves as a necessary relationship between the real and imaginary parts of the complex
modes of any second-order self-adjoint system and they have been written compactly and
explicitly in this paper. It would appear that the implications of these constraints are both
profound and several.
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NOTE ADDED AT PROOF STAGE

At the time of writing, the authors were unaware of any previous work identifying the
relationship between real land imaginary parts of complex modes. It has since emerged
that this relationship has been noted for a different particular scaling of the modes [15]
and a simpler form emerges in that case. The development in [15] does not generalize to
arbitrarily scaled or real modes and it does not proceed via an equation in the form of
(8) which offers useful additional generality.


