Reorientation of Fibres and Local Mechanisms of Deformation in a Wood-Inspired Composite

EI Saavedra Flores, SM Murugan, MI Friswell & EA de Souza Neto (Swansea University)

Journal of Multiscale Modeling, Vol. 4, No. 1, March 2012, Article ID 1250003, 15 pages

Abstract

This paper investigates the reorientation of fibres and local mechanisms of deformation in a composite material inspired by the mechanics and structure of wood cell-walls. The mechanical response of the material is calculated under tensile loading conditions by means of the computational homogenisation of a two-dimensional representative volume element (RVE) of material. Here, the fibres are represented by a periodic alternation of alumina and magnesium alloy fractions, embedded in a soft epoxy matrix. In order to validate the present multi-scale framework, we compare our numerical prediction for the reorientation of fibres in the wood cell-wall composite with experimental data, finding a good agreement for a wide range of strains. Numerical simulations show that the model is able to describe the reorientation of fibres and the different stages of local deformation and failure in the proposed wood-inspired material. Furthermore, we assess a simple expression to calculate the reorientation of fibres and the in-plane Poisson's ratio of the present composite.

Paper Availability

This material has been published in the Journal of Multiscale Modeling, Vol. 4, No. 1, March 2012, Article ID 1250003, the only definitive repository of the content that has been certified and accepted after peer review. Copyright and all rights therein are retained by the World Scientific.


Link to paper using doi: 10.1142/S1756973712500035

Journal of Multiscale Modeling