Initial Sizing Optimisation of Anisotropic Composite Panels with T-shaped Stiffeners

JE Herencia, PM Weaver & MI Friswell (University of Bristol)

Thin-Walled Structures, Vol. 46, No. 4, April 2008, pp. 399-412


This paper provides an approach to perform initial sizing optimisation of anisotropic composite panels with T-shaped stiffeners. The method divides the optimisation problem into two steps. At the first step, composite optimisation is performed using mathematical programming, where the skin and the stiffeners are modelled using lamination parameters accounting for their anisotropy. Skin and stiffener laminates are assumed to be symmetric, or mid-plane symmetric laminates with 0, 90, 45, or -45 degree ply angles. The stiffened panel is subjected to a combined loading under strength, buckling and practical design constraints. Buckling constraints are computed using closed form solutions and energy methods (Rayleigh-Ritz). Conservatism is partially removed in the buckling analysis by considering the skin-stiffener flange interaction and decreasing the effective width of the skin. Furthermore, the manufacture of the stiffener is embedded within the design variables. At the second step, the actual skin and stiffener lay-ups are obtained using genetic algorithms, accounting for manufacturability and design practices.

Paper Availability

This material has been published in Thin-Walled Structures, Vol. 46, No. 4, April 2008, pp. 399-412, the only definitive repository of the content that has been certified and accepted after peer review. Copyright and all rights therein are retained by Elsevier. This material may not be copied or reposted without explicit permission.

Link to paper using doi:10.1016/j.tws.2007.09.003

Link to Thin-Walled Structures